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OPTIMAL HORIZONTAL PNEUMATIC TRANSPORT

V. V. Kazantsev and M. B. Rivkin UDC 621.867.8

A study has been made of the effects of periodic large-scale pressure perturbations on the pas-
sage of air through a moving bed of granular material in dense-phase horizontal pneumatic

transport.

Experiment shows [1] that horizontal pneumatic transport allows the throughput to be increased by in-
creasing the air speed up to some limit, after which an adverse effect sets in, which cannot be explained in
terms of existing views on the mechanism of motion in high~concentration two-phase mixtures, according to
which the mixing in the lower layer of material (bed) occurs on account of the tangential stresses proportional
to the air speed acting at the phase interface [2]. Also, this model fails to explain the very considerable pres-
sure fluctuations accompanying the motion of the mixture through the pipeline (Fig. 1).

The studies on the structure of high-concentration flows {3] provide the following model for the trans-
port; most of the material is transported in the lower part of the pipeline at a constant porosity m as a
bed whose height and structure vary little along the length [2]. Ridges or dunes travel along the upper sur-
face of thebed [4], and the air flowing over thesegives rise to periodic pressure perturbations, which in-
teract with the air flowing through the bed. This in turn gives rise to an oscillating force within the bed,
which is directed along the line of flow and ftends to accelerate the bed.

As the frequency of ridge passage is a single-valued function of the air speed, we have to examine the
transient~state passage of the air through the bed for a fixed porosity in response to two forces: a constant
pressure gradient and a periodic pressure perturbation at the upper boundary.

The following is [5] the linearized equation for isothermal infiltration:

@P PP, 0P .
P oz ot @

O<x<L, O<z<H, t>0, M=emykp,, P =p2
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The boundary conditions are

o=

Fig. 1. Characteristic pressure-pulsation
oscillogram for a transport pipeline; D =
2.1-10-2 m, L = 14 m, material alumina,

Fig. 2. Calculation scheme,

PO, x, 1) =po+ po(1 —¥IL) + pa(x — V)P,
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—— P(H, % =0, 0<x<L,
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where pg(x—vt) is a periodic perturbation of given form moving with a speed v with respect to the bed, and

The initial condition is

where

P(z, 0, ) = (py + pe)s

Pz L, y=pi 0<Lz<H.

Px, z, 0)=ph, O<x<<L, O<z<H.
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Ppm(t) is defined by the following:

M —dd? an (t) + (vn + A’m) an (t) = (Dnm (t) + ‘an

(4)
{5)

(6)

Equations (1)-(6) may be solved by finite integral transformation [6]; the solution is sought in the form

(7

(8)

(9)

(10)
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Fig. 3. Pressure distribution along a trans-
port pipeline,
and satisfies the initial condition
PO
P (0) = PRI (11)
where
A, \0-5 9
Fun= (22)" G+ pf = (= 1l az)
L
O, )= (v,,)°~55 [Po + Po (1 — %/L) + py (x — v1)]? sin A% ® xdx. (13)

]

We represent the periodic perturbation (Figs. 2 and 3) as a Fourier sine series:

P —ut) = 2 b, sin kay, (x — ot), (14)
k=1
where w; is the frequency of the pressure fluctuations, which is a single-valued function of the air speed. We
have as follows up to terms of the second order of smallness:
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where @ = (kwy — Am)*?)L; 8= (wy + Am) "*)L; v = kwgv; we solve (10) and get after certain steps that

i ) A \08 2 2
P, ()~ WE)OT exp (— Nt) -+ {( __m_) [(Po‘*‘Pi ‘:_(x ) " pal +

20, (— O™ 2
Al? A, L2

n

0.5
+(%"—) P+ p +(—1)"p+ %Py +

0.5
+ 90,0y (— " |} [1—exp(— N+ 2O 1o 4 px
M

278



&, m
\ / Fig. 4. Optimum throughput G,
i 0y kg/ d calculated values of
10 100 sec, ana calc Vi O
i 7 T m for horizontal pipelines of
/ various length L, m; D = 2,1+ 102
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where the symbols are

I e a
N = }h—(vn—%—?\,m); T=Ncos—2— +'ysm—2—;

6 = N cos (%—}—w)drvsin(% —}—vt);
—Neos (2w —vsin (B — ). R=Neos B —ysinB .
S cos(2 yt) ysm(2 v) cos 5 'ysm2
V = N'cos y¢ -+~ ysinyt; W:Nsinyt—ycosvt.i

The components of the volume infiltration force are as follows:

i [i an (t) ?\4{315 COs }\.,?1 5 x] sin vg.s 2
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We see from (15)-(18) that the air pressure and bulk infiltration force take the form of undamped oscilla-
tions for t — «, with the frequency dependent on the speed of propagation of the perturbation at the surface of
the bed.

It is clear that provided

nm

a:(), -"0 '—*:k&),
i.e L o

(19)
the pressure oscillations in the bed will be in phase with the surface perturbation, then the bulk infiltration
force is maximal, which therefore increases the carrying capacity of the air flow,

Figure 4 shows the maximal throughput of a horizontal pneumatic transport pipeline for various lengths,
together with the calculated values of m for each of the optimal states. The m = (L) relationship allows one
to determine wj and hence the air speed v giving optimum performance,
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NOTATION

p =1)“'5 is the pressure, Nm™?%;

Pes Py are the initial and atmospheric pressures, Nm=2;

@ is the concentration, kg/kg;

mg is the porosity; _

Vg V are the initial air speed and speed relative to material, m/sec;
L is the pipeline length;

H is the depth of bed in tube;

X, 2 are the coordinates;

t is the time.
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REMOVAL OF A LIQUID FROM AN OPEN-CELL BODY
BY FLUIDIZED POROUS PARTICLES 1,

E. N, Prozorov, V. M, Starov, : UDC 621,785:66,096.5
and N. V., C_huraev

It is shown that an analytic description can be given for the elimination of a bound material from
a porous body immersed in a fluidized bed composed of small porous particles; the equations for
fluid transport in a porous space can be used.

Here we consider the elimination of a bound fluid from a porous ceramic semifinished product during
preliminary thermal processing ina fluidized bed [1-3].

Pure-oxide ceramics are produced mainly in semifinished form by hot pressing with a wax binding agent
[4]. A major step in manufacturing such components that precedes the final firing is to eliminate the binding
agent, which may be performed in a fluidized bed (5], The process is operated at temperatures below the on-
set of evaporation of the binding agent. In that case, the vapor transport can be essentially neglected, so the
internal mass transfer in the porous system occurs only in the liquid state.

A difference of our treatment from previous ones [6, 7] is that we derive solutions from the liquid-trans-
port equations for film motion [8, 9] in a model porous medium. The model is a system consisting of capil-
laries of radii R; and R, interconnected throughout their length. This corresponds to the actual porous struc-
ture of numerous ceramic materials, in particular in that it fits the bimodal pore-size distribution {10, 11].

If the body is immersed in a fluidized bed at a temperature well below the evaporation point of the liquid, the
only cause of external mass transport is liquid loss to the particles on collision with the surface (Fig. 1).

The capillary potential of a porous particle Pp = 20 cos 8/r is less than the potential of the liquid at the
surface of the hody Py(T), so the liquid is drawn into the capillaries of the particles when the latter are near
the surface.

The following is the equation for the momentum change for the liquid in a particle capillary:
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